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ABSTRACT

A scanned-laser active imaging system employing a synchronously
scanned image-dissector detector was analyzed from the standpoint of
how much resolution would be available to an observer viewing a CRT
display. Graphical results are given of the system performance in
atmospheric and underwater environments as well as of the effects of
laser power, wavelength, and the addition of image intensifiers to the
receiving system. The novelty of the analysis is that it directly pre-
dicts the detection performance of the human observer when aided by a
scanned-laser active imaging system. The performance of such a sys-
tem compares favorably with range-gated active imaging systems.

PROBLEM STATUS

This work was begun while the author was employed part-time at
the Westinghouse Defense and Space Center and was continued while at
NRL. It has been completed in the belief that it will assist the Navy's
research and development program and is being issued as an interim
report on an NRL Problem.

AUTHORIZATION

NRL Problem N01-24
Project RR 104-03-41

Manuscript submitted April 7, 1971.
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APPLICATION OF A SCANNED-LASER ACTIVE IMAGING SYSTEM
TO ATMOSPHERIC AND UNDERWATER VIEWING ENVIRONMENTS

INTRODUCTION

Man wants to see what is in the dark. He has developed candles, lanterns, street
lights, flashlights, and automobile headlights as active sources to light up the darkness.
Recently he has achieved impressive results with passive vision-aiding systems such as
low-light-level television and image-intensifier chains. To augment the illumination
when insufficient for these passive devices, active systems have been proposed that will
use lasers as light sources.

All active systems are limited in their performance by backscatter from the atmos-
phere. The automobile headlight in fog is a familiar example of the increased imaging
difficulty caused by backscatter. One way to reduce the effect of backscatter is to use a
pulsed laser and a receiver that can be gated on only when the return from the desired
target arrives at the receiver. This type of system has been analyzed by Steingold.and
Strauch (1) without considering laser sources specifically. Another somewhat novel sys-
tem is possible, however, which also eliminates backscatter. In this system a CW laser
is scanned to illuminate a screen in synchronism with the scanning of an image dissector
used as a receiver to present a cathode-ray-tube (CRT) display. This system appears to
have limitations similar to the gated system with the exception that first-order back-
scatter is inherently eliminated for the scanned system, whereas it can only be approached
in the gated system.

Since the only meaningful performance criterion for comparison of display systems
is the information presented to a display observer, it would be helpful if this analysis of
a scanned-laser active imaging system would present data relative to the observer.
Following the method of Rosell (2), the scanned system has been analyzed. Theoretical
curves have been derived of observer display resolution vs range for various scene:
contrasts, visibilities, and laser powers and wavelengths.

DESCRIPTION OF THE SYSTEM

A general raster scanning system is shown in Fig. 1. This system could apply to an
airplane observing earth terrain, a satellite observing a distant planet, or an aquanaut or
remote observer observing the bottom of the ocean. Both the laser illumination and the
dissector receiving aperture are scanned over an angle a. For simplicity it is assumed
that all target points within the angle are at a distance r from the illuminator/receiver
system. Also, 8, is defined as the half angle of the receiver system, and 02 is defined
as the half angle of the laser beam. This beam will be assumed small and adjustable with
optics to fit the receiver's active area at any distance. The receiver diameter will be
denoted by Y1, and the initial diameter of the laser beam will be denoted by Y2. The
transmitted laser power will be called w.

Note: This report represents work that was done in part while the author was affiliated with the
Westinghouse Electric Corp., Defense and Space Center, Baltimore, Md., and which has since
been expanded to include the undersea environment.
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SOURCE RECOVER Fig. I - Geometry showing source beam (laser) and re-
SBURCE BRECEVER ceiver beam (image-dissector active area). Due to the

finite propagation time, the receiver never looks into the
(first order) backscatter of the source beam.

The novelty of this system can be appreciated by considering Fig. 1. Due to the
propagation time required for the laser beam to travel the distance 2r, a scanned beam
directed at a spot will return to the receiver 2r/c sec later, The receiver beam, if
pointed at the initial spot 2r/c sec after transmission, will receive the photons reflected
from that spot. The illuminating beam, for most practical systems, will be far away
from the point being observed by the receiver; therefore, no backscatter from the laser
will enter the receiver. By adjustment of scanning speed, separation of illuminator and
receiver, or reduction of the illuminator/receiver angle, almost any system can be made
free from first-order backscatter.

ANALYSIS OF THE SYSTEM

Imaging in Air

The receiver and source diameters at a distance r are defined as

Y I= Yl+ r tan 68 (I)

and

Y2 -y Y2+ r tan 22 )

The transmitting angle can be made equal to the active angle of the receiver by using the
equation

2 1+ r

This makes the illuminated area equal to the actively viewed area. The power density
supplied to this area is given by

power density = We ,r (4)
Wy12

where a, the loss coefficient in air, is given by

a = (3.91 x 10 ) (2.S) o.585V 17 3 (5)

2
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WATER SURFACE

SUBSURFACE
) BUOY

Fig. 1 - Example of a subsurface moor
which cannot be analyzed by the Method
of Imaginary Reactions because of the
internal loop of cable ABC

Fig. 2 - Equilibrium
configuration of a
loaded cable

and the position of a point on the cable is given by the vector P with components.

P = xi + yj + zk

The measure of unstressed arc length along the cable is denoted by s, which increases
from zero to the total unstressed length of cable L in the indicated direction. The load
on the cable per unit of unstressed arc length is defined by the vector f(s). In addition
a vector point force F acts at the free end of the cable.

The internal reaction of the cable to this system of external loads is represented by
the resultant force vector R with components

R = Rxi + Ryj + Rzk

Since the cable is assumed to be perfectly flexible, its equilibrium direction is parallel
to R, and its equilibrium tension T is equal to the magnitude of R. Elementary consid-
erations of static force balance then yield the resultant force vector as

(la)B(s) = F - df ) dif
L

and consequently the tension as

T(s) = IR(s)I = (RB) 71/ 2
= (R 2 +R 2 +R2) 1/2 (lb).

The strain e in the cable can now be obtained from the constitutive equation, which
in its most general static form has the functional relationship

3
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E = e(Ts) . (IC)

This equation is quite arbitrary; that is, the cable is not restricted to being, for example,
inextensible (s = 0) or linear (e 7T). The dependence of the constitutive relation on the
unstressed arc length s simply indicates that the cable can be composed of various sub-
cables of different sizes and/or materials.

Finally, on taking into account the equilibrium direction and extension, the static
configuration of the cable in Fig. 2 is found by quadrature of the formula

(Id)P(S) = A+ Jf{l + e(4)] R(!)/T(4)) dif 

Equations (la) through (Id) form the basis for evaluating the equilibrium configura-
tion of any cable array which is analyzed by using either the Method of Imaginary Reac-
tions or the Extended Method.

THE EXTENDED METHOD

Basic Concepts

Consider now the problem of determining the equilibrium configuration of the loaded,
internally redundant cable array shown in Fig. 3. The cables forming the array are
designated by the numbers 1, 2, etc., as indicated in the figure, and quantities associated
with a particular cable are denoted by a subscript corresponding to that cable number.
Thus the vector A<3 denotes the anchor location of cable 3, s2 denotes the measure of
unstressed arc length along cable 2, and f4(s4) represents the load per unit of un-
stressed arc length on cable 4.

Fig. 3 - Equilibrium configuration of
a loaded, internally redundant cable
array

4
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The analysis of this array by the Method of Imaginary Reactions would proceed by
releasing cable 3 from its anchor and replacing the effect of the anchor by a guessed, or
imaginary, reaction I3 acting at the end of cable 3. However, because of the internal
loop formed by cables 2, 4, and 5, the release of this redundant anchor is insufficient to
permit the determination of the equilibrium configuration of the resulting array.

Suppose though that, besides releasing the redundant anchor, a cut is also made
somewhere within the internal loop of cable -for example, above the junction of cables 5
and 3. This cut creates a statically determinant array; and, if the forces of internal
constraint released by the cut are replaced by a guessed reaction Is acting at the end of
cable 5, the loads on the resulting array are as depicted in Fig. 4a. The additional reac-
tion -Is, which must be imposed at the junction of cables 2 and 3, follows as a direct
consequence of Newtonts third law.

\f5

f4;

F S

fl/

(e)

(a) Resulting distribution of known
loads and guessed reactions

_- - pa-- Y A3

(b) Equilibriu configuraton
of the decomposed array

Fig. 4 - Decomposition of the internally redundant cable array shown in
Fig. 3 as prescribed by the Extended Method of Imaginary Reactions

If now the directions of increasing arc length (from 0 to LJ) are assigned as indicated
in Fig. 4b, then the resultant force vector at any point in the decomposed array can be ob-
tained by combining Eq. (la) with a balance of forces at the cable junctions. This gives

B(s5) = Is - fs(&) de 
Ls

s4

R4('4) = F, + Rs(0) - r f4()d 
L4

(2a)

(2b)

5
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R3(s 3 ) = 13 _ Q f,(f) d, i (2C)

(2d)

(2e)

r2

B2(S2) = F2 - IS + 1.3(0) - f 2(t) dcI
=2

RI(s1) = F1 + 1R2(0) + R14(0 - 4 (t) d4 

The tensions and strains in each cable are calculated from Eqs. (ib) and (It) respec-
tively; finally, the equilibrium configuration of the decomposed array (Fig. 4b) is deter-
mined from Eq. (ld) as

P1 (S 1) = A1 +

P 2 ($ 2 ) = P1 (L1) +

P 3 (s,) = P2 (L2 ) +

P4 (s4 ) - P 1(L1 ) +

P S (S3) - P4(L4) +

El + El (t)] ER 1(t)/T 1(t)J dif 

S2

(Ifs+ 82 (fll IR2({f)/T2 (6)] de I

o3

.fB + 3(6t)] tR3(t)/T3(t)] cI

0
B4J 1 fl+ e()] ER 5 ()/T4(t)3 dc .

04
¢ tte5) RSfXSf]d 

In general, for an arbitrary set of guessed reactions the equilibrium configuration
calculated for the decomposed array does not satisfy the geometric constraints on the
original array. That is, P3(L3) t A, and P.(L5) A P2 (L2). As a measure of the error
between the calculated and actual configurations, the positive definite error function E is
defined as

(4a)E = ]A3 -P3 (L3 )12 + IP2(L 2)-Ps(Ls) 2}

or in expanded form as

E = { Is3 - x3(L3)] 2 + lb3 - y3 (L 3 )32 + 'c 3 - z3(L5))2

+ x2(L2)- x5(L5)] 2 + ty2(L2) - y 3(LS)]2 + Ez2(L2) - 2s(Ls)] 2} (4b)

Since E is the square root of the sum of the squares of the individual coordinate errors,
E vanishes identically when and only when the true equilibrium configuration has been
obtained.

(Sa)

(34

(3d)

(3e)

6
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The question then arises: Can the actual reactions, which make E identically zero,
be found so that the equilibrium configuration of the array can be determined without re-
course to solving the full, nonlinear, force balance-geometric constraint equations of the
system? The Extended Method of Imaginary Reactions answers this question affirma-
tively.

Let the additional forces Al3 and AT. be applied at the ends of cables 3 and 5 re-
spectively. (Simultaneously the additional force -Al5 must be applied at the junction of
cables 2 and 3, so that Newton's third law remains satisfied.) The values of these addi-
tive forces are given by

Al3 = (S/E)EA3 - P3 (L3 )] (5a)

and

AT5 = (S/E)[P 2 (L2)-P (L5 )] . (5b)

The force Al3 is taken to act in the direction from the end of cable 3 to its required point
of anchorage A3, and the force Al. is taken to act in the direction from the endof cable
5 to its required point of junction with cables 2 and 3.

The symbol 8 denotes a Positive number, having the dimension of force, yet to be
determined. In essence, it is a convergence parameter used to choose the magnitude of
the additive forces in a manner such that the decomposed array approaches the correct
equilibrium position. It is important to recognize that, since the ratios [a3 - X3(L35]/El
[x 2 (L 2 ) - x,(Ls)]/E, etc. are of bounded variation (between -l and +1), the convergence
parameter S must approach zero as E becomes small.

Iterative Procedure

The full concept of the solution, with reference to the array in Fig. 3, can now be
laid out:

1. Release the redundant anchor A3 and replace its effect by an imaginary reaction
13 acting at the end of cable 3.

2. Make a cut somewhere within the internal loop of cable - for example, above the
junction of cables 5 and 3. Replace the internal forces released by this cut by an inagi-
nary reaction Is acting at one side of the cut and an equilibrating reaction -Is acting at
the other side.

3. Choose initial values for 13 and Is. Any values consistent with the static stabil-
ity of the loaded array are acceptable.

4. The structure is now statically determinant (Fig. 4). Calculate the equilibrium
configuration and from this the quantities A3 - P3 (L3), P2(L 2) - Ps(L5 ), and E.

5. Choose an initial value of S to find candidates for A13 and ATs. The value of S
can be chosen large, since it will of necessity become smaller as the solution proceeds
step by step. In fact, at first choose S to be the order of magnitude of the guessed
reactions.

6. Calculate the new equilibrium configuration of the array when the candidate reac-
tions I. = A3 AT3 and Is = Is + AT, are applied at the ends of cables 3 and 5 respec-
tively. (The candidate reaction -I' must simultaneously be applied at the junction of
cables 2 and 3.)

7
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7. If ', the new measure of error, is less than E, the old measure, then a success-
ful step has been made. In this event, begin againfrom this new configuration by chang-
ing the retained values of 137 Is, A3 - P3(L3), P2(L2) - P3 (L3 ), and E to those values
calculated from this new configuration. Retain the same value of 8 and proceed with an-
other iteration by finding the new Al's and the corresponding equilibrium configuration.

S. Possibly on the first step, but certainly on some subsequent step, the candidate
E' will be found to be greater than or equal to E of the previous step. Then S is too
large. The candidate values should be rejected and the previous ones retained by return-
ing to the former equilibrium configuration of E < V.

9. Reduce 8; halving is suggested. Proceed from the last acceptable configuration
until again a candidate E' is found to succeed.

10. This iterative process continues until the error function E becomes as small as
desired.

Since E vanishes only at the real rather than at an imaginary array configuration, a
solution of the entire problem has been found by considering only statically determinant
arrays. There is no need to be particular in the choice of 8: choose an initial value, let
it remain constant until the candidate B' Ž E, and then halve it.

It is important to note that the Extended Method of Imaginary Reactions is globally
convergent. That is, the iterative process converges to E = 0 from any set of initially
guessed reactions consistent with the static stability of the system. Proofs of the exist-
ence of a positive S at each iterative step, of the convergence of E to zero, and of the
uniqueness of the calculated reactions are given in the first section of the Appendix.

Numerical Example I

To illustrate the convergence and the simplicity of the Extended Method of Imaginary
Reactions, consider the array acted on by the two-dimensional system of point loads
shown in Fig. 5a. The unstressed cable lengths and constitutive relations are as indi-
cated on the diagram. Cables 1 and 3 are inextensible, cables 4 and 5 are linear, and
cable 2 is nonlinear. When the array is decomposed as illustrated in Fig. ib and the
imaginary reactions IS and I are applied, the resultant force in each cable is readily
calculated from Eq. (2) as

5s(s5) = Is 

R4(S4) = F4 + RB(0) = -4.797016 i + 6.148782 k + lS 

R13(s3) 13 

R12(S2) = F2 - IS + R3(0) = 3.147936 i - 1; - 13 

R1(sI) = FI + 12(0) + 114(0) = -4.010032 i + 6.148782 k + I.

The tensions are obtained from Eq. (lb) as

8
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-X

(a) (b)

Fig. 5 - Example of the analysis of an internally redundant
cable array by the Extended Method; (a) system of external
loads and (b) decomposition of the array

and the strains are calculated from the appropriate cable constitutive relation. Finally
the equilibrium configuration of the decomposed array is obtained from Eq. (3) as

P1 (s 1 ) = [11/T1] s1

P2 (s 2 ) = P1(L1) + [1 + c2 J [R2/T2 ] X3

etc.

The error function E is defined by Eq. (4) as

E = {[21 - x3(L3)] + [3- z3 (L3 )I + [X2(L2) - x5(L5)] + [z 2 (L 2 ) - z2(L5)JS}

and the formulas for the changes in the imaginary reactions are given by Eq. (5) as

Al3 (S/E)f[21-x 3 (L3)) i + [3- z3(L3)] k1

and

AlI = (S/E)U[x 2 (L 2 ) - x 5 (L.)] i + [Z2(L,) - z5(L5 )] k1

The convergence of the extended method is demonstrated in Table 1 for a "good"
initial guess and in Table 2 for a "bad" initial guess of the actual reactions. The param-
eter S is defined by S = 1/2k1 In both schemes the initial value of k was tried as -2.
In Table 3, a comparison is made between the exact equilibrium configuration, from
which the problem was derived, and the equilibrium configuration calculated during the
final iteration in Table 1. Since the final value of E is less than 5 x10- 4 , the calculated
coordinates are all known to be within ±0.0005 of their true values. This fact is evident
in Table 3.

I __
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Table 1
Convergence of the Extended Method of Imaginary Reactions: "Good' Initial Guess

Iter- 'ax 1sx c3 (L3) x2(L 2) X(L)= 1/2k
ation 

i32 _ Sz Z3(L3 ) Z2(L 2 ) Z5(Ls) k

o 5.000ooo 6.000000 19.911764 16.007420 15.293455 1.83x100 I
0 4.000000 -4.000000 1.417750 4.541225 7.772219

1 5.142223 6.093309 19.619953 15.596247 16.270474 3 31x 100 2
-3.793214 -4.422262 5.383981 8.352110 6.638818

5.246353 6.042436 20.335447 16.349469 16.196618 1
-3.973094 -4.292988 3.216381 6.234987 6.880840

5.418728 6.082083 20.644912 16.632568 16.894158 8 l1v0xr 3
-4.029221 -4.460513 3.587505 6.570976 6.212847

4 5.473038 6.042074 20.938255 16.943270 16.818232 8.13x1r- 1 4
-4.119078 -4.405738 2.607824 5.614500 6.312403

5.477787 6.051691 20.873056 16.866245 16.917254 1.aexur' 4
-4.088914 -4.459416 3.091175 6.082073 6.173390

6 5.519975 6.034739 20.990181 16.982957 16.988676 8 aoxw- 2 ?-4.119215 -4.489764 2.991145 5.981488 6.060209

7 5.520933 6.034181 20.986239 16.978465 16.999952 4.61 X IV 2 7
_4.118350 -4.497449 3.035169 6.024775 6.0205

8 5.523265 6.030540 20.999085 16.992779 16.999579 3 7X10- 2 a-4:124309 -4.500063 3,005318 5.996890 6.032894

9 5.523361 6.029823 20.997855 16.991718 17.004019 2 66Oxl- 2 S
-4.124870 -4.503861 3.020894 6.012694 6.023381

10 5.523677 6.028015 21.002423 16.997272 17.003331 2 14x1 2
Q0 -4.127940 -4.505431 3.007859 6.000979 6.019728 2 xIQ- 8

11 5.523233 6.026907 21.001651 16.997115 17.005873 1 8x1O- 2 9
-4.129378 -4.508861 3.016341 6,010284 6.011742

5.518106 6.021677 21.00265B 17.000095 17.000296 s laXur 4 13
-4.138089 -4.515889 3.000355 6.000127 6.000304 1

32 5.518044 6.021630 21.000240 1.00o01S 17.000192 442xcl-4.2 -4.138173 -4.515931 3.000087 5.999920 6.000272 4 _42

10
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Table 2
Convergence of the Extended Method of Imaginary Reactions: "Bad" Initial Guess

Iter- I3X ISX X3(L3 ) x2 (L2 ) x5 (L5 ) S = 1/2k
Kation I3Z Isz z3 (L3 ) z 2 (L 2 ) ZS(L5 ) k

0 g1.g g000 -t2.000000 1 0,193674 12.429742 -16.324218 3.47X101 -22.000000 2.000000 8.731501 4.259365 19.3457169.7lO-

1 0.245725 1.314681 11.078499 10.176189 1.978978 1 88X10' -2
1.339288 0.260885 15.828663 10.910753 15.541077

2 2.362064 3.063214 16.243958 11.940450 4.540494 1 1 1_-1.397173 -0.726801 -1.541930 1.003618 12.375103

2.992960 4.044829 15.504987 10.672431 5.659410 1 17x101 0
_0.794679 -2.235246 11.605196 12.888318 10.213462 0 1- _

3.463238 4.473857 17.584443 13.011434 7.520010 o7x 0 0
_-1.531136 -2.006324 5.967077 7.988855 11.149511

3.901942 5.179191 17.730388 13.240565 9.819161 6 2860 0
-1.912235 -2.412288 6.371451 8.571791 10.962750 .

6 4.422308 5.723715 18.511665 14.137512 12.143437 4 71 o-2.448809 -2.792814 5.077739 7.499883 10.406633 I

4.941904 6.140103 19.093582 14.774646 14.512557 3 50x100 1
-2.882668 -3.399780 5.843562 8.362846 9.061670

8 5.213946 6.177503 20.037657 15.808536 15.269935 2 93 100 2-3.288439 -3.499501 3.281182 5.948490 8.649544

9 5.296028 6.223443 20.022909 15.783782 15.738284 2.02 0 2 2
-3.312422 -3.729885 4.481649 7.133027 8.104645

10 5.416723 6.229063 20.386960 16.185753 16.154257 1 57>100 2-3.495442 -3.849904 3.807508 6.518571 7.713504

11 5.514503 6.234086 20.582411 16.404031 16.604090 1 15x10 0
2

-3.624240 -4,040496 3.922167 6.668280 7.165600

12 5.605642 6.190424 20.950299 16.820354 16.870855 912x10 -
-3.825502 -4.149036 3.068989 5.887420 6.794480

"Clearly, the method is now converging to the equilibrium solution, as can be seen from iteration 2
or 3 in Table 1.

11
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Table 3
Comparison Between the Exact Equilibrium Configuration
and That Calculated During the Final Iteration in Table 1

Exact Calculated
Cable _ _ _ _CaJ~lexntn3Z(L.) T. . .X.(L.) z,(LI) _ T_

1 3.000000 4.000000 2.513006 3.000070 3.999947 2.513294

2 17.000000 6.000000 2.671112 17.000115 5.999920 2.671196

3 21.000000 3.000000 6.897295 21.000240 3.000087 6.897339

4 9.000000 12.000000 2.040816 9.000007 12.000023 2.041M49

5 17.000000 6.000000 7.526882 17.000192 6.000272 7.526863

Irrelevancy of the Location of the Internal Cut

Thus far the internally redundant cable array in Fig. 3 has been decomposed, in part,
by matting a cut above the junction of cables 3 and 5, and the point force F. has been
taken to act at the junction of cables 2 and 3 in the decomposed array. This situation is
shown in Fig. 6a together with the chosen directions of increasing arc lengths. (The
continuous loadings f2 (s2 ) etc. have been suppressed for clarity.) However, this decom-
position is not unique; actually the location of the internal cut and the disposition of the
point loads are arbitrary in the solution of the equilibrium problem, Some other, but by
no means all, possible decompositions of the internal loop are shown in Figs. 6b, 6c, and
6d.

F.4 f

54/ '4/

Flg. B~ - 1oedtepsbedem

p2siiol2 -o

F. -

14~~~~~~~~~~F

'41~~~~~~~~~~'

Fig. 6 - Some of the possible decoma-
positions of the internal loop of cable

12
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The values of the error function E and the additive internal reaction for these cases
are as follows. For the case of Fig. 6b

E = {A 3 - P3(L3)1
2

+ IP5(L5 ) - P2(L2) I2

Al2 = (S/E)EP5(L5) - P2(L2 )]

for the case of Fig. 6c

E = { IA - P(L 3 )I 2 + IP 5(Ls) - P4 (L4 )I J

Al4 = (S/E) [P5 (L 5 ) - P4 (L 4 )]

and for the case of Fig. 6d

E = {IA3 - P3 (L3 ) 2 + IP2(L2 ) - PI(L)I 1} /

Ail = (S/E)[PE 2 (L2 ) - P1 (LI).

As previously, the additive reaction in each case is taken to act in the direction from its
point of application to its required point of junction. Similarly, in each case, the itprative
process to be followed in reducing the error function E to zero is exactly the same-as
outlined previously, with obvious modifications in the subscripting.

GENERALIZATION TO ARBITRARY CABLE ARRAYS

General Theory

Because of the infinite number of ways a cable array can be internally redundant it
becomes difficult to develop a simple and consistent notation for describing every1 pos-
sible array configuration. Rather, the generalization of the Extended Method to. arbirary
cable arrays is best illustrated by example. To this end consider the problem of deter-
mining the equilibrium configuration of the system shown in Fig. 7. The array Is loaded
by a set of continuous forces f1(sl) etc. (which have been suppressed for clarity) and by
a point force F acting at the apex.

The first step in the analysis is to make a sufficient number of cuts to render the
array statically determinant and to replace the constraint released by each cut by a
guessed reaction acting at the end of the cut (and for an internal cut by an equilibrating
reaction acting at the opposite side of the cut). Application of this procedure to the sys-
tem in Fig. 7 yields the decomposed array depicted in Fig. 8.

Since the array is now statically determinant, its equilibrium configuration under the
loading of the guessed reactions can be easily calculated. For the decomposed array in
Fig. 8, for example, the resultant force vectors are readily obtained by combining Eq..
(la) with a balance of forces at the cable junctions. When the directions of increasing
arc length are taken as indicated in the figure, these vectors become

Ro(ss) = 19 - f f9(f) de, (6a)
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Fig. 7 - A multiply redundant cable array
to be analyzed by the Extended Method

Fig. 8 - Decomposition of the cable array
shown. in Fig. 7 as prescribed by the Ex-
tended Method

14
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R17 (s 7 ) _ 17 -

Rs(s') = is -

R3 (s 3 ) = I3 -

2(S2) = 12 -

97

J f 7( e)di 
L 7

sS 

r f S(6) de ,
L 5

f (6) d4,
JS3

J f 2( e) de
fL2j* 12 4)d:

Rg(sa) = F + R7(0) + R90() - f
L

R6(s6) = -Is + R2(O) + R8(0) -

R4 (s 4 ) = -Ig + [3(0) + R6(0) -

.s8

I f(6) d4 ,

L6

94

* f4(e) de I

RlSl) = -I7 + 14(0) + R5(0) f() d .d(e)

The tensions Tn, strains en,, and equilibrium coordinates P,, of the decompoqedarray
can now be determined from Eqs. (lb), (le), and (Id) respectively. This gives

Pl(sl) = Al + | [ + 81 (4))1[R1(4)/T1 (e)] d4, (7a)
-0

(7b)
r4

P4 (S 4 ) = Pl(L 1) + E 1 + e4(6)) [R4 (e)/T 4 (e)] d4 I
0

P6(s6 ) P4 (L4 )+ + a6
0

El + e6(e))] [R6(e)/T6 (e)] dcI4

Again the basic problem is to find additive forces AI2, AI3, AT5, (-AXS), AT7, (-Al7),
and Al., (-A1), to be applied at the ends of cables 2, 3, 5, (6), 7, (1), and 9, (4), respec-
tively, such that the decomposed array approaches its true equilibrium configuration.
The Extended Method of Imaginary Reactions defines these forces as

(ab)

(6c)

(6d)

.:(6e)

(61)

.. : . i; . ..
I. ..

: : . ; : ;9

(Og)

(Oh)

etc.

(7c)
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AI2 (S/)E[A2 - P2 (L2 )] (8a)

Al3 = (S/E)fA 3 -P 3(L3 )J . (8b)

15 = (8/KE)tP(L 6) -PS(LsJ (e)

Al7 (S/E)EP(L9)-P7(L7 )J (ad)

AT9 = (S/E) P4 (L 4 ) - P,(L9 )3 I (e)

where the error function K is again defined by the square root of the sum of the squares
of the individual coordinate errors as

K I { 2 -P2(L2)j
2

+ A_3 -P 3 (L 3 )12 + IP 5 L_)-P5 (L3 A)
2

fiPI (L1) - P7 (L 7)2+ IP4(L4 ) - P9 (L9 ) 12} (9)

and where B is again a positive number chosen to guarantee convergence to the correct
reactions.

As previously, each incremental reaction is taken to act in the direction from its
point of application to its required point of junction, and E vanishes when and only when
the correct equilibrium configuration has been obtained. The iterative procedure to be
followed in reducing E to zero is exactly the same as the procedure developed previously
and once again is globally convergent.

The technique for generalizing the Extended Method to other internally redundant
arrays should by now be obvious.

Numerical Example II

To demonstrate the ability of the Extended Method to handle arbitrary cable arrays
and the rapid convergence of the iterative process when the equilibrium calculations are
programmed on a high-speed computer, a particular example concerning the multiply re-
dundant array shown in Fig. 7 is considered.

The anchor points of the system are given (in feet) as

Al = -10000 i ,

A2 _ 7000 i - 700 i,

A3 = 7000 i + 7000 j + 1000 k,

and the unstressed cable lengths and constitutive relations are tabulated in Table 4. A
plan view of the array is illustrated in Fig. 9.

The forces per unit of unstressed arc length are assumed identical for all cables in
the array and taken (in lb/ft) as

fn(sn) = d(i cos 8<j sin 8) - 0.03 k,
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Table 4
Cable Properties for Numerical Example II

Cable | L (ft) e

1 11,300 T/(6x10 6)
2 11,250 T/(6X10 6 )

3 10,550 T/(6X10 6 )

4 3,700 T/(2 x10)6

5 3,700 T/(2x10 6 )
6 2,825 T/(2X10 6)
7 3,100 T/(4X 106)

8 3,100 T/(4 X106 )

9 3,100 T/(4 x 106 )

Y

$

61 ~~CABLE JUNCT1I 6--

AxX 

Fig. 9 - Plan view of the array
considered in example II

where 0 (Fig. 9) represents the angle at which the horizontal component of load is ap-
plied to the array. The point load acting at the apex is given (in lb) by

F - D(i cos O + j sin 8) + 20000 k.

When the array is decomposed as in Fig. 8, the resultant force vectors are readily
obtained from Eq. (6), since

f fnf(:) d4: = Ed(i cos &+j sin 8) - 0.03 k](s.-Ln)
L n

M�� ...

17



SKOP AND O'HARA

(For more complex loadings it is usually necessary or desirable to evaluate this integral
numerically.) The tensions and strains are then calculated; finally, the equilibrium con-
figuration of the decomposed array, under the influence of the guessed reactions, is de-
termined by quadrature of Eq. (7). (For the particular loading and constitutive relations
assumed in this example, the quadratures can be performed exactly. The algebra, though
straightforward, is tedious and is not reproduced herein. For more complex situations
a numerical determination of the equilibrium shape of the decomposed array is again
usually necessary or desirable.) The guessed reactions are then varied in accordance
with Eq. (8) until the calculated configuration of the decomposed array satisfies the geo-
metric constraints imposed on the original array.

Two problems are considered. In the first the values of d and D are set equal to
zero and the resulting shape of the array is found. In the second the values of d and D
are taken as d = 0.05 lb/ft and D = 125 lb and the configuration of the system is deter-
mined for values of B from 0" to 360" in steps of 10".

Typical results which can be obtained from the calculations are shown in Table 5
and Fig. 10. Table 5 gives the equilibrium locations of junctions a, /3, y, and K (defined
in Fig. 9) for the case d = D = 0. Figure 10 depicts the X, Y, and Z displacements of
these junctions from their values in Table 5 when d and D assume their nonzero values,

Table 5
Equilibrium Coordinates of Junctions
a, A v, and K for the Case d = D = )

Junction x (t Y (ft) Z (ft)

a -1984.3 38.0 7998.3

/3 1434.5 -1373.1 8018.6

y 1436.1 1450.6 8061.1

K -9.4 4.6 10398.8

For all cases examined the calculated configuration of the decomposed array was
considered to have satisfied the geometric constraints imposed on the original array
when the value of the error function became E C 0.1; thus the equilibrium coordinates
are accurate to within 40.I ft. Run time, excluding compile, on the NRL/CDC 3800 com-
puter averaged 30 seconds per case for the 37 cases considered, which nicely demon-
strates the rapid convergence of the Extended Method.

STATICALLY UNSTABLE CABLE ARRAYS

Throughout this report the assumption that the cable array is statically stable (that
is, under the action of the applied external loads no cable segment has zero tension) has
been tacitly made. Of practical interest is the behavior of the technique of solution when
this assumption proves false for the system under investigation. There are two cases to
consider.

1. Suppose that the tension at one or more, but not all, of the anchor points approaches
zero. The iterative process and consequently the equilibrium configuration of the array
are not affected by this, and the solution simply reveals that these particular anchors
are not necessary for the structural integrity of the system.

18
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90

Fig. 10 - x, Y, and z displacements of junctions
a, p, y, and K from their values in Table 5 when
d and D assume their nonzero values
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a,

0- 4 0 9 1 2 0 1 5 0 2 0 2 2 9 3 2 3 6 0r
Fig. 10 (Continued) - x, Y, and z displacements of
junctions a, $, Yandx from their values inTable5
when d and D assume their nonzero values
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2. Suppose that the tension at all anchor points or at one or more internal segments
of the array approaches zero. Then, as is shown in the second (concluding) section of
the Appendix, the change dE in E approaches -cO. As a result it becomes impossible to
find a S such that E' < E; consequently

1irn E constant iA 0
8-*o

Thus the calculated configuration must be incorrect. However, it is self-consistent in
the sense that an examination of the generated solution reveals those segments, and only
those segments, in which the tension is actually zero under the applied loads. To pro-
ceed, it is now possible to remove the zero-tension segments from the array and to
solve for the equilibrium configuration of the modified array.

These properties of the Extended Method to identify slack line segments of the array
during the course of the analysis are useful in that they make a preliminary stability in-
vestigation of the system unnecessary.

CONFIGURATION-DEPENDENT EXTERNAL FORCES

Thus far it has been assumed that the point loads F acting on a cable array are
known numbers and that the continuous loads fn are known functions of the unstressed
arc lengths sn. In many applications, especially those involving the calculation of
mooring motions under hydrodynamic forces, this assumption fails to hold, and the ex-
ternal loads become dependent on the configuration of the array. That is, the Fn become
functions of the location in space of their point of application, and the f, become func-
tions not only of s, but also of Pn( s,) and dP,/ds,.

Under a large class of these configuration-dependent loads, however, the equilibrium
shape of the array can still be determined by combining the Extended Method with ithe
mathematical technique of successive approximations (4). This technique is briefly:
described.

Suppose that in Fig. 3 the point and continuous loads are functions of the configura-
tion of the array. Make an initial estimate of the final array configuration (this estimate
need not be very accurate), and from this configuration calculate the estimated values of
Fn and the estimated functional relations f,(sn). Or, even more simply, just make an
educated guess at the values of F, and the relations f,( sn). Note, these initial estimates
are used only for starting the successive approximation routine; from here on the routine
is automatic.

With the estimated loads employed, calculate the equilibrium shape of the array by
using the Extended Method. After this position is determined, make corrected estimates
of the external loads, and find a corrected equilibrium shape. This process is repeated
until the equilibrium configuration has been obtained to within a specified accuracy and
converges under certain conditions of continuity and boundedness of the external forces
(4).

This combined technique has previously been used in Ref. 5 for the analysis of the
current-induced motions of N-point moors by the Method of Imaginary Reactions. This
reference gives a detailed description of the technique and its applications.

21
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CONCLUSIONS

The method presented in this report is applicable to the analysis of a wide range of
internally redundant cable systems including suspension bridges, structural nets, and
moorings. The method itself involves no more than elementary statics once the external
force distribution has been defined and should prove particularly attractive to the prac-
ticing engineer who would otherwise be faced with the simultaneous solution of large,
interdependent sets of force-balance, geometric-constraint equations which are grossly
nonlinear.

The iterative procedure which characterizes the technique is unique in that it is
globally convergent to the equilibrium configuration of the array and does not require the
calculation of any slopes or derivatives. This latter property results in considerable
savings of time and storage on the computer.

Although the static stability of the cable system is assumed, situations in which
slack line segments arise are identified in the course of the analysis. Thus preliminary
stability investigations are unnecessary.

External loads are also assumed to be independent of the array configuration. How-
ever, when this assumption does not hold) the equilibrium configuration of the array can
still be determined by combining the method of solution with the mathematical technique
of successive approximations. This combined technique is particularly important in the
analysis of mooring systems.
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Appendix

PROOF OF THE CONVERGENCE AND THE UNIQUENESS OF
THE EXTENDED METHOD OF IMAGINARY REACTIONS

STATICALLY STABLE ARRAYS

In this appendix the proof is given that the Extended Method of Imaginary Reactions
converges to the unique equilibrium configuration of an internally redundant cable array
from any set of initially guessed reactions consistent with the static stability of the array.

To facilitate this proof, it is expedient to introduce some additional notation. Let
those cables in an array which are released from anchor points and to which external
guessed reactions are applied at s = L be denoted by the set of subscripts {r1, r21 .. .,
Further, let those cables to which internal guessed reactions are applied at S L be
given by the subscripts {i, i2 , . .. , i }W and let those cables to which the corre.spo:hdlg
equilibrating reactions are applied at s = L be represented by the subscripts {ei.. St
. . ., eN]. Thus, for the decomposed array in Fig. 4 {r} = {3}, {i} = {5} and {e} = {2};
and for the decomposed array in Fig. 8, {r7 = {2,3}, {i} = {5,7,9}, and Ye} ;{6,S,}.

In terms of this notation the error function E, defined as the square root of the sum
of the squares of the individual coordinate errors, can be written in matrix form as

E2 = DTD (Ala)

where the column matrix D of individual coordinate differences is given by

A , P,1 (Lrj) 1

A - P(

P (Lr. )- Pir (Li.)e1Ie 1 11 11

PeNL e") - Pj(L,) J
and where the matrix DT represents the transpose of D.

Consider now the total differential of Eq. (Ala). Since,
array, the equilibrium coordinates are functions of only the
Irk, ... and Ii I , ... .applied at the ends of cables r1,
spectively, this differential is

(Alb)

for a statically determinant
guessed reactions Ir,
r2 .. -and il, i2, ... re-
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K dE = -DTj dl t (AUa)

where I, the column matrix of guessed reactions, is defined by

I

Il

Id

I

IiN

(A2b)

The square matrix J is equal to the Jacobian matrix of the transformation from "end-
coordinate error" space to "imaginary reaction" space. This matrix is conveniently
written as

J = a (-DT)/Z (IT) (A2v)

where the notation implies that the i j ih element of J is obtained by takin the partial
derivative of the ith element of -D with respect to the jth element of I

On recalling that the Extended Method of Imaginary Reactions defines dl as

(A3)dl = (3/E) D,

Eq. (A2a) for the total differential of E can be recast as

dE = -(V/E 2 ) Q t (A4a)

where Q is the quadratic form

Q = DJD (A4b)

If it can now be shown that Q is positive definite, vanishing only at D = 0 (where 0 is
the null matrix), the convergence of the Extended Method to a unique set of equilibrium
reactions (and, consequently, to the unique equilibrium configuration of the cable array)
follows from the argument given in the next paragraph.

Suppose Q is positive definite. Then the Jacobian, det I, of the transformation
from end-coordinate error space to imaginary reaction space is positive.* Thus, the
transform is one-to-onet; that is, a unique set of end-coordinate errors determines a

*R.A. Frazer, W.J. Duncan, an A.R. Collar, "Elementary Matrices," Chapter I, New York: MaC-
milan, 1947.

tA.E. Taylor, "Advanced Calculus," Chapter IX, Boston: Ginn, 1955.
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unique set of reactions and vice versa. In particular the equilibrium set of errors D = 0
determines the unique set of reactions for which E 0 9. Further, the Extended Method
converges to this set of reactions from any set of initially guessed reactions. For, if Q
is positive definite, then dE, defined by Eq. (A4a), is negative definite for S greater than
zero. Thus the existence of a positive S which makes E' < E follows from the Mean
Value Theorem; and since E = 0 at only one point in reaction space, global convergence
of the iterative process to this point is guaranteed.

Therefore it remains only to show that Q is indeed positive definite. To this end,
certain preliminary calculations are necessary. Note first that in a decomposed array
the resultant force in any cable located on a path between the point of application of a
guessed reaction and the fixed (anchor) point of the array contains this reaction in a
linear manner. For example, for the array in Fig. 4

R 1 (s 1 ) =I3 + G1 (sl)

R2(S2) = I - Is + G2(s2)

4(S4) = Is + G4 (s 4 )

etc., and for the array in Fig. 8

R 8 (s 8 ) = 17 + 19 + Ga(ss)

R6 (S6 ) = 12 - Is + 17 + 19 * G(s 6 ),

etc. In these expressions the Gn terms are functions of the applied external loads but
are independent of the guessed reactions.

The next preliminary calculation is finding the partial derivative of

rL

Hn= [1 + % (6)] [R%(e)/Tn(6)] dL (A5)

with respect to the guessed reaction 'k. By using the facts that the resultant force vec-
tors contain only linear combination of the guessed reactions, that T, = IR,1, and that
en = 6n(Tn s), this derivative becomes

3Hf/ 3Ik = n [sgnn(Ik)] B,(t) de . (Afa)
0

Here B, is a square matrix given by

BnXX BoXY RnXZ

Bn(sn) = BnYX Bn Y Y BnYZ (A6b)

LBz ByBnj

and the function sgn,(I) is defined as
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f+i if R,, depends on t1k t

sgn,(Ik) = 0 if R. is independent of Ik ,

-1 if R. depends on -Ik

The individual elements BEfeb of B. are readily calculated as

R..Rnb d I 1 en 
B-,Ab s n) = T.n dTn ( T+,, 

where 8.b is the Kronecker delta:

Sab =

1 if a = b I

0 if a ;6 b .

On expanding the derivative in Eq. (MAd), B,,b can be recast as

1 den R
n 

1+ Ef (Tf2 8 b RnnRnb) -
T 

As a final preliminary calculation, consider the matrix Bn. By substituting Eq. (Aee)
into Eq. (Ab), Bn can easily be shown to have the form

Bn(sn) R, TRn + S1TS" , (Aa)

where R, is the row matrix

1/2

R (s,) = i de n (Tn2 dT I
(Ab)

and where S, is the square matrix

1/2 [O Rz Rny

) RnZ ° RnX 0

Rn-R RnX °

(Ale)

Both of these matrices are real, since physically, for a perfectly flexible cable, the
quantities T,,, E, and des,/dT,, must all be positive.

Consider now the manner in which an end coordinate of a decomposed cable array is
determined, By referring to the equilibrium equations (3) and/or (7), it becomes appar-
ent that this coordinate is obtained as a summation over a certain set of cables of the
integrals H,, given by Eq. (A5). Thus, the end-coordinate error matrix D, Eq. (Aib),
can always be decomposed into a summation over the individual cables in an array as

(Atc)

+ (I + ) a (A6d)

(A6e)
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lim E = constant A • .
8-, o

As is remarked in the main text, the above result is thus indicative of a statically un-
stable cable array.


